Daniel Crumly
Assignment 11 – Envisioned PhD Thesis
Time and Memory Efficient Approximation Algorithms for Dense Bipartite Matchings
Thesis

There exist approximation algorithms for the minimum weight assignment problem which run in time proportional to the square of the number of vertices in the graph and with memory requirements proportional to the number of vertices in the graph.
Outline

Given a bipartite graph G = (V={X,Y}, E) with
[image: image1.wmf]XY

³

 and a cost function
[image: image2.wmf]:

cE

®

¡

, the assignment problem produces a matching
[image: image3.wmf]:

fYX

®

 with the smallest total cost:
[image: image4.wmf](

)

(

)

,

Y

cfyy

å

. The goal of this paper will be to solve the assignment problem on bipartite graphs which are dense – i.e.
[image: image5.wmf](

)

EXY

=W

. For large graphs, this memory requirement can be problematic, especially since most algorithms cannot work on the data structure in a paging-friendly manner.
Motivating Example
If we wish to build a mosaic of an image by tiling many smaller (similarly sized) images, we can represent this as an assignment problem with X = the small images, Y = the positions in the final mosaic, and c the distortion from the original image by putting a particular small image in particular position. In this case, the graph is a complete graph and
[image: image6.wmf]EXY

=

.
Algorithms
Divide and Conquer – compute the complete cost matrix and subdivide the columns of E (elements of Y) until there are fewer than a constant threshold, k1 number of elements. Use any algorithm that runs in time proportional to the number of columns in the matrix to compute a matching on each subset of Y using the remaining unused elements of X in a greedy manner.

Rounding – If the context of the problem allows rounding, round each element of X and Y. Group the elements of Y into groups of fixed size, k1. For a particular group, take the closest k2 ≥ k1 elements of X and compute the edge matrix. Use any algorithm to compute a matching, and remove the used elements of X from the set and continue.
Theorems
The divide and conquer algorithm uses
[image: image7.wmf](

)

OE

 space and runs in
[image: image8.wmf](

)

lg

OEXY

+

 time. The rounding algorithm uses
[image: image9.wmf](

)

OXY

+

 space and runs in
[image: image10.wmf](

)

OXY

 time.

Conclusion
We have shown that there exist approximation algorithms for the minimum weight assignment problem which are efficient on dense graphs. Additionally, these algorithms can sometimes be improved after taking domain specific information into account.
_1226086271.unknown

_1226086438.unknown

_1226089355.unknown

_1226089503.unknown

_1226089609.unknown

_1226089180.unknown

_1226086427.unknown

_1226084533.unknown

_1226084696.unknown

_1226084426.unknown

