1. I wasn’t aware of computer-based critique systems as a specific type of system. I am aware of systems that enable rules or critique as one designs, such as grammar checkers or rules built into Google SketchUp’s component system (a component for of a door can only be placed against a vertical surface, for example).
|
I suspect many of the folks I work with have little experience with these systems. As such, I was very interested in how we could apply such a system to the design work that we do (and the design work our customers do) related to Google SketchUp. I could see specifically starting out with a manual checklist of items that are relevant to the problem domain and then, somehow, automating that in software. I’m actually working on a side project where a software-based critique system would be very helpful.
2. The main message to me is that computer-based critique systems are useful in assisting human-based critiquing. Simply, humans often do not know or understand all of the aspects of a given design and an automated system can help.

3. Yes.
4. No.
5. What does the article say about (a) design, (b) learning, and (c) collaboration?

a. The article suggests that design can be both a human-driven discipline and a computer-driven discipline.

b. Learning is iterative and that the learning of design principles changes with changes to the problem domain. A system must be flexible enough to adapt to these changes.

c. Software components, specifically different types of critics, can collaborate to create better design.

6. I would like to see how the HYDRA system could be applied to software design. For example, I would like to apply UI design standards in a Generic critic to notify the software developer when these standards are in jeopardy of being violated. I think, in many ways, developers would rather hear from a machine when standards are being violated than hear from someone outside of the development group (such as a software tester or UI designer).

