Jonathan Dormody

1. I have had a fair amount of experience with the concepts in the article, specifically in Object-Oriented Programming (OOP) and in Instructional Design. Outlines and suboutlines are common to creating an instructional design document (a document that explains the design of a course).
The traditional course development lifecycle is much like a traditional software development lifecycle: analysis, design, implement, test, release. During analysis, the Instructional Designer (ID) interviews Subject Matter Experts (SME), those people in the industry who are already performing tasks related to the training, to gather a list of tasks that the SME performs to accomplish some larger goal. Each task can be thought of as a subsystem of a greater, complex, system (the overall goal of the course).

The SME takes these tasks and creates a hierarchy of objectives during the design phase. For example, a task such as “log into the network” can be rewritten as the goal “the student will learn to log into a network as an administrator.” This hierarchy can consist of any number of levels, but generally there are four: the overall objective of the course (such as “Learn to Administer a Network”), followed second level objectives, followed by third level, and finally the lowest level objective. This hierarchy might look like this:

Administer a Network

Access administration console
Log into a network as administration

Enter password and username

Create administration users
Each lower objective is combined to achieve the higher objective on up to the overall objective of the course. The lowest-level objectives are generally where most of the content of a course exist, the higher-level objectives generally consist of contextual information, but are generally thought of as containers for one or more subordinate objectives.
If you were to create a knowledge base, or learning content management system, where pieces of independent content can be stored and reused for different learning events (a Web course, instructor-led course, self-paced course, and so on), you would want your lowest-level objectives to be loosely coupled such that you can use them in any context (the hierarchy is decomposable).

1.1 & 1.2 Simon suggested that “human problem solving, from the most blundering to the most insightful, involves nothing more than varying mixtures of trial and error and selectivity.” This suggestion is amusing to me because CNNMoney.com recently posted its “101 Dumbest Moments in Business.” Moment #32 reads:
“Stocks and bonds, part 2: Proving the value of expensive professional stock-market expertise...

TradingMarkets - a Web site that provides its subscribers with professional stock-market expertise for as much as $100 a month - in January invites 10 Playboy models to participate in an investing contest.

When results are tallied toward the end of the year, 40 percent of the bunnies deliver better returns than the S&P 500, compared with just 29 percent of actively managed mutual funds.“

We don’t know if these Playboy models had investing experience, but in my own investing, I’ve found I’ve done as well or better than professionals simply by using some basic rules of selectivity (buying growth, best-of-breed stocks, when the market (and the individual stock) is down, for example).
2. I did not have a lot of time to analyze another researcher’s thoughts on Simon’s work, but I found this cartoon in a presentation done by Grady Booch, a fellow at IBM (and expert in the field of Object-Oriented Analysis and Design). I think this cartoon sums up what good UI design for a complex system should look like.

http://www.booch.com/architecture/blog/artifacts/Complexity.ppt#356,12,Creating the illusion of simplicity
