
DIS2002 | 147

KEYWORDS

Ubiquitous computing, user experience,

recombinant computing, Speakeasy

INTRODUCTION

As we move toward a world in which

computation is ubiquitously embedded in

our environment and in the objects we

carry with us, the range of possible interac-

tions and interconnections among compu-

tational devices will explode. Users will

have available to them far greater numbers

of devices, and far greater numbers of

types of devices, than we now experience.

We believe that, in such a future, users will

wish to create configurations and combina-

tions of these devices, and will likely want

to create particular configurations that no

application developer has foreseen.

Imagine that you want to connect your

digital camera to your friend’s PDA in order

to show her the photos you took on your

vacation. This is a task that may be difficult

given the state of technology today. Such

an interaction might require that both the

camera and the PDA share a common

memory card format, or that one of the

users have a cable appropriate for

connecting both types of device, or that

both users be able to connect their devices

to larger computers that can send and

receive the pictures over the Internet. In the

future, if we are lucky, the vendors of these

technologies will likely develop a number of

ways to accomplish such an exchange,

perhaps by creating sets of software

services that provide the glue between the

camera and the PDA. In a particularly ambi-

tious future, we might even develop stan-

dards that allow all PDAs and cameras to

interconnect with one another.

The point to take away from this example

however, is that, even if we solve this

particular problem, we have not even

scratched the surface. A solution to this

problem does nothing to allow my digital

video camera to connect to the same PDA,

or my digital camera to display a picture on

the new wall-sized interactive surface in the

meeting room, or any number of other

Designing for Serendipity:
Supporting End-User Configuration of Ubiquitous Computing
Environments

The future world of ubiquitous computing is one in which

we will be surrounded by an ever-richer set of networked

devices and services. In such a world, we cannot expect to

have available to us specific applications that allow us to

accomplish every conceivable combination of devices that

we might wish. Instead, we believe that many of our inter-

actions will be through highly generic tools that allow end-

user discovery, configuration, interconnection, and control

of the devices around us. This paper presents a design

study of such an environment, intended to support

serendipitous, opportunistic use of discovered network

resources. We present an examination of a generic

browser-style application built on top of an infrastructure

developed to support arbitrary recombination of devices

and services, as well as a number of challenges we believe

to be inherent in such settings.

Permission to make digital or hard
copies of all or part of this work for
personal or classroom use is granted
without fee provided that copies are
not made or distributed for profit or
commercial advantage, and that
copies bear this notice and the full
citation on the first page. To copy
otherwise, to republish, to post on
servers or to redistribute to lists,
requires prior specific permission
and/or a fee.

DIS2002, London. © Copyright 2002.
ACM-1-58113-515-7/02/0006...$5.00

http://www.parc.com/

speakeasy/

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

Jana Sedivy

+1 650 812 4427

sedivy@parc.com

Mark Newman

+1 650 812 4840

mnewman@parc.com

Mark W Newman PARC

Jana Z Sedivy PARC

Christine M Neuwirth

Carnegie Mellon University

W Keith Edwards PARC

Jason I Hong

University of California at

Berkeley

Shahram Izadi

University of Nottingham

Karen Marcelo PARC

Trevor F Smith PARC

148 | DIS2002

possible combinations that we can easily

imagine.

This scenario highlights one aspect of inter-

acting with technology which we believe

will become increasingly important in the

future: the ability to improvisationally

combine computational resources and

devices in serendipitous ways. In the digital

camera-PDA example, all of the possible

means of interconnection require some

degree of advance planning. Either you

must purchase devices that share a

common memory card format, or your must

find and purchase an appropriate cable

(which will likely not work with any other

two cameras and PDAs), or the developers

of the devices must explicitly allow the

interaction you wish to undertake, by

creating special software and even stan-

dards to support it. If none of these cases

holds true, then the interaction between

these two devices is impossible to you. The

co-occurrence of any particular set of tasks

with the resources required to support it

must be foreseen. In a world in which we

are surrounded by potentially orders of

magnitude more devices, the resources

that allow arbitrary ad hoc interconnection

are unlikely to be conveniently at hand.

Such a mismatch between a desired

combination of functions and the tools

needed to accomplish them might also

arise because users will certainly make use

of the resources in their environments in

ways unexpected by the creators of those

resources [3, 11].

One of the starting points for our work is

the belief that systems should inherently

support the ability of users to assemble

available resources to accomplish their

tasks. In a world of richly embedded and

interconnectable technologies, there will

always be particular combinations of func-

tionality for which no application has been

expressly written. Supporting serendipi-

tous discovery and use of resources

requires that we rethink certain aspects of

the way that we design those resources

and the frameworks in which they exist.

Our research group has been investigating

an approach to such problems in the

Speakeasy project; we call this approach

“recombinant computing.”

Central to the recombinant computing

approach is the notion that, in such a

world, we cannot expect applications to be

expressly written to have prior knowledge

about all of the myriad sorts of devices they

may encounter. The range of possibilities is

simply too large, and anticipating all the

potential desired interactions is impossible.

But we can expect users to have knowl-

edge about the devices they encounter in

their environments. In the recombinant

approach, users themselves must be the

final arbitrator of the semantics of the enti-

ties they are interacting with. For example,

if my Palm Pilot knows nothing about (i.e.,

does not have software written to use)

printers, the software infrastructure can still

provide the necessary technical building

blocks to allow my mobile device to

communicate with the printer. However, it

is the user who understands what a printer

does and makes the decision of when and

whether to actually print, as well as what to

print.

This philosophical stance implies require-

ments not only for the user interface to the

system, but also for the underlying tech-

nical architecture of the system.

First, both the user interface and the under-

lying system must allow users to assess

what devices and services are available

(“there is a printer here; I can access this

video projector from my PDA”); determine

what their capabilities are (“this is a format

conversion service; there is a display here

that can show video”); understand their

relationship to one another and to the

physical and social environment (“this

printer is nearby but, it is ‘owned’ by a user

and is not considered public”); and be able

to predict likely outcomes from interaction

(“the video projector is currently in use by

another person”). This implies that devices

and services must be able to provide

enough information about themselves in a

human-understandable form, so that users

can make informed decisions about what

they will do.

Second, both the user interface and the

underlying system must provide a way for

users to create and manage the intercon-

nections among devices and services. In

addition to making this possible, it is impor-

tant that the underlying mental model of

interconnections, as supported by the

system and exposed through the user inter-

face, be as simple and general as possible.

In the remainder of this paper we will give

an overview of our recombinant computing

approach and discuss a browser based

user interface for interacting with the

Speakeasy infrastructure. We will also

outline our design rationale and report

some preliminary user feedback on our

system.

RECOMBINANT COMPUTING

Recombinant computing is a philosophy of

system design which dictates that

computing environments be created from

the bottom up, by creating individual enti-

ties to be part of an elastic, always-

changing whole. Furthermore, this

philosophy dictates that these entities, or

components, be designed and introduced

with the thought that they might be used in

multiple ways, under different circum-

stances, and for different purposes.

So far, the recombinant computing “philos-

ophy” sounds similar to the philosophies of

encapsulation and reuse behind compo-

nent frameworks like COM (Component

Object Model) [9] or Java Beans [6].

Indeed, our approach builds on the founda-

tions of long established software develop-

ment approaches such as object oriented

design [7] and component frameworks.

However, we extend these concepts in one

important way: these entities are exposed

to end users to be used and configured in

highly dynamic and ad hoc ways, such that

components can interact and interoperate

with each other even though they were built

with no prior knowledge of one another.

The additional constraint that users be able

to use and arbitrarily recombine sets of

potentially unknown components suggests

additional constraints on the design of the

computing framework. One important

constraint is that components must expose

recombinant interfaces. These are specific,

simple, well-known programmatic inter-

faces that govern how components can be

made to interoperate with one another.

They are basic so that they do not require a

large time investment for programmers to

conform to them and they are domain inde-

pendent.

This last feature is where our philosophy

differs from the established technology of

component frameworks such as the afore-

mentioned Java Beans and COM objects,

as well as from their more network-friendly

descendants like Jini [19]. In these

systems, a developer can write a piece of

DIS2002 | 149

software to communicate with a printer and

the programmer of a word processing

application such as Microsoft Word can use

it as long as they agree beforehand on

exactly how the programmatic components

will communicate with each other.

However, if later on, someone would like to

extend the functionality of MS Word to deal

with another domain such as digital

cameras, they must rewrite part of the

application to deal with the new device.

The recombinant computing notion

attempts to address this issue by creating

semantically neutral interfaces that allow

entities to interact in at least a very basic

way without having to rewrite code. For a

more detailed technical discussion, see [5].

SPEAKEASY: A RECOMBINANT

COMPUTING INFRASTRUCTURE

The Speakeasy infrastructure is a test bed

for exploring systems and usability issues

in the recombinant computing approach. In

this section, we will describe some of the

core concepts of the infrastructure insofar

as they are relevant to how the user

perceives the system.

Components

As mentioned, Speakeasy components are

simply entities that can be connected to

and used by other components, as well as

by Speakeasy-aware applications.

Examples of components might include

devices, such as microphones, printers,

and cameras; software services, such as

file servers, databases, and instant

messaging clients; and even modules of

functionality within larger systems or

devices, such as the address book on a

PDA.

Any Speakeasy component is described in

terms of one or more of our semantically

neutral programmatic interfaces. Currently,

these include interfaces for data exchange,

discovery, user interaction, and the repre-

sentation of contextual information.

Components can also supply user inter-

faces at run-time, which allow users to

control them directly. Several interfaces

can be associated with a single component

giving it the facility to cope with several

target platforms and tasks. For example, a

printer component could provide an admin-

istrative user interface implemented in both

HTML and Java as well as a primary user

interface implemented as a voice interac-

tion in VoiceXML.

Connections

One of the central concepts in Speakeasy

is the notion of a connection between

components, which is an association

among two or more components for the

purpose of transferring data. Such a

transfer may represent a PDA sending data

to a printer, or a laptop computer sending

its display to a video projector. A connec-

tion typically involves a component that is

the sender of data, a component that is the

receiver of data, and an application that

initiates the connection. The initiating appli-

cation can monitor and control the state of

the connection, and could be a domain-

specific tool or a generic browser tool, such

as might run on a user’s PDA or laptop.

Context

For the purposes of our current discussion,

the final important aspect of Speakeasy

components is that they all have the ability

to provide structured information about

themselves, their location, their owners,

and so on. This information is largely

intended for human consumption, although

it could be used by applications to provide

particular organizations of a set of available

components, or assist the user in selecting

components.

INTERACTION APPROACHES

Our work in this area straddles two trends

in current research in ubiquitous

computing. On the one hand, there is work

that attempts to address the user interface

with the endpoints of ubiquitous

computing, such as work in calm tech-

nology [20], information appliances [14],

and others [1, 10]. This body of work has a

strong emphasis on the user experience

but does not generally address how users

will cope with unexpected resource avail-

ability or adapt the technology to new kinds

of tasks.

On the other hand, there is work that

addresses the infrastructures that will make

ubiquitous computing feasible [8, 17]. This

latter category depends, in large part, on

the existence of application developers or

at least technically sophisticated systems

administrators to wire together the available

resources into applications that meet the

needs of users.

We argued earlier that there is a middle

ground however, where end users should

be able to configure and assemble the

devices and services of interest to them.

While allowing users the control to

configure programmatic entities is not in

and of itself a novel idea, such end-user

control is especially challenging in ubiqui-

tous computing environments, in which the

devices and environments that are the

objects of users’ control are likely to be

highly dynamic and highly fluid.

There are several interaction paradigms

that we considered as models for user

interaction in a recombinant world: pipes (à

la UNIX), scripting languages, wiring

diagrams/dataflow representations, file

browser-style dragging and dropping and

form-filling wizards.

The Unix pipe system [13] is a unidirec-

tional interprocess communication channel

consisting of three main pieces: a

streaming data source, a data pipe, and an

endpoint which accepts the data. A user

typically types a command string which

indicates the programs to use as source

and endpoint for the pipe. For example, in

a Unix command line window, a user could

type “cat DISPaper.txt | grep weasel” to

pipe the contents of the DISPaper.txt file to

a program that can display any lines

containing the string “weasel”.

Some scripting languages allow users to

assemble predefined UI components into

new programs and others allow the

automation of existing applications at the

UI level. For example, Python [2] is an

object oriented scripting language that

provides a simple windowing system which

is usable with small amounts of program-

ming. The MacOS scripting language,

AppleScript [16], allows users to create

series of UI choices (open this application,

press this button, choose this radio button,

close the application...) that mimic the

actions that a user would take while using

the application. Some scripting environ-

ments also allow users to record their

actions into scripts which can then be

edited and replayed later and others allow

these scripting commands to flow over the

network to remote computers.

Data flow applications allow users to

choose and persist connections between

components of a system. Such applica-

tions often present a “wiring diagram”

150 | DIS2002

model to their users. For example, the

musical composition application, Max [4],

allows users to place musical components

(such as tone generators and timers) onto a

canvas and through drag and drop

gestures create connections between them.

Large networks of components can be

created to generate dynamic, complex and

original music. The connections in these

systems can often have characteristics that

are distinct from the components they

connect. For example, Max connections

can be gated such that they only pass data

under certain conditions.

File browsers provide a hierarchical view of

files with the ability to take actions such as

copy and move. Most users trigger these

actions with a drag and drop gesture and

the browser indicates action status in a

modal popup window. File browsers like

the Windows Explorer represent network

resources such as printers and shared

directories with the same interface

language as files and folders, allowing file

transfer and printing with the same drag

and drop gesture, but delegating more

complex interaction to configuration

windows or external applications.

Wizards provide a user with a sequence of

screens querying for data which can then

be used to achieve a goal. Wizards are

typically designed for specific branching

tasks such as detecting, configuring, and

enabling a newly installed device. Often

wizards allow users to reverse their

progress in the face of new questions that

they are unable to answer or recognize as

not applicable to their goal. Although this

style of configuration is quite rigid and

constrained, it has the advantage that it

generally requires very little technical

expertise.

OUR APPROACH

In choosing an interaction style, our goal

was to strike a balance between flexibility

and ease of use for non-technical users.

For our purposes, we rejected the options

of scripting languages or Unix style pipes

because they would require a level of tech-

nical expertise that we felt was inappro-

priate for our system although they provide

a high level of flexibility and control. The

dataflow/wiring diagram approach also

seemed too complex for less technical

users, as well as being very demanding of

screen real estate.

We also rejected the form-filling and wizard

approaches because, although they are

very simple and easy formats for guiding

users through a configuration, the very

structured nature of this interaction style

was not flexible enough for our needs. We

wanted to allow users to assemble compo-

nents in ways that were not predetermined

by developers. Nevertheless, we recog-

nized that this style was very effective for

structured tasks and adopted it as the

interaction style for handling “task

templates”, which we describe in a later

section.

We initially explored an interface with an

interaction style much like a file browser. It

was primarily intended to be a simple tool

for the development team to test the

integrity of their software components. It

combined a tree-view pane of all available

components with a large canvas area upon

which users could drag and drop compo-

nents onto each other to perform simple

data transfer actions such as dragging from

a service that captures white board images

onto an image viewer service. The applica-

tion also allowed users to be able to access

the user interface provided by each

component and view its context.

However, this “drag and drop” approach

has the fundamental limitation that it

requires significant screen real-estate and

an input mechanism to perform direct

manipulation. In our target environment,

however, we expected our users to interact

with the infrastructure via resource-poor

mobile devices such as handheld PDAs

and mobile phones. While it would be

possible to develop drag-and-drop wiring

diagram-style applications for a handheld

device, such application styles are perhaps

best served when run on devices with large

screens. Such an application must be

developed for one particular PDA platform

(operating system, screen size, color, and

so on), and would not be easily portable to

different PDA platforms. This was an

important consideration for us since there

is little uniformity in the PDA models

already in use among our expected users.

Furthermore, if at all possible, we did not

want to require our users to install any

additional software on their devices so that

they could simply walk into a networked

room and immediately begin interacting

with our system.

As a result of these practical deployment

considerations, we decided to implement

our interface as a web application. Web

browsers are already commonly found on

handheld devices and many of the PDAs in

use by our colleagues have the capability

to connect to the lab’s wireless (802.11b)

network. Moreover, the same application

framework could potentially be used on

many different devices with different form

factors and screen sizes. However, the

implementation choice of a web application

restricted us with very significant

constraints. In particular, the interaction

styles available to us were essentially

limited to hypertext links, buttons and drop

down menus because extensions to web

technology that would allow more direct

manipulation such as dynamic HTML, are

not supported on web browsers for small

devices.

THE SPEAKEASY BROWSER

The rest of this paper focuses on the

design and preliminary evaluation of a

browser for the Speakeasy environment.

The purpose of the browser is to allow

users to discover, interact with, and

connect arbitrary components. We imple-

mented two ways to do this: task-oriented

templates and connecting components

directly.

DIRECT CONNECTIONS

In the most basic “direct connection” mode

of operation, the browser provides access

to the “raw” functionality of components—

by allowing users to directly connect them

to one another and to access their user

interfaces to control them. In direct

connection mode, users can discover,

control, and connect any available compo-

nents—any component on the network is

accessible by users at any time.

The browser provides a number of

ways of viewing and organizing the

available components, each of which

might be appropriate under different

circumstances. For example, for a

given task, some users might want to

view components by their location,

while another task might be better

facilitated by grouping components by

their owner. The browser provides

support for viewing and grouping

components by metadata such as

DIS2002 | 151

types, locations, and owners (see

Figure 1).

The browser also provides access to

custom UIs associated with the

components. These UIs are provided

by the components themselves,

and do not require any prior knowledge of

the component or the UI on the part of the

browser. For example, a projector compo-

nent may provide a custom UI that presents

controls for turning on the projector’s

power and controlling other features of it.

The browser is able to present these

controls to the user, even though it knows

nothing about what they do.

TASK-ORIENTED TEMPLATES

While the browser’s direct connection

mode provides “raw” access to compo-

nents, an issue of particular interest to us

was supporting the ability of users to make

sense of the components available to them,

especially given the highly dynamic, hetero-

geneous, and potentially unfamiliar nature

of ubiquitous computing environments

such as ours. According to sensemaking

theory [18], sensemaking needs cannot be

considered in isolation of the situations that

create them. The theory inspired us to

focus on what users might be trying to

accomplish by connecting components in

particular situations. For example, users

might want to connect components in

order to give a presentation, send contact

information to someone, monitor the dryer

in the basement while up in the living room,

etc.

We believed that the browser could poten-

tially help automate such situations while

remaining ignorant of their specifics. This

hypothesis led us to the incorporation of

task-oriented templates, which are “proto-

types” of common tasks that can be

created and shared by users. Templates

contain a partially specified set of connec-

tions and components to be fully specified

and “instantiated” by users at the time of

use. For example, a template named “Give

a presentation” might have slots for a file to

be displayed and a projector to display it

on, as well as for controlling the room

lighting, the projector, speakers, and a file

viewer. Slots in a template can refer to fully

specified components (e.g., the NEC MT

1030+ projector in Room 17) or can be

defined generally, using constraints (e.g.,

any projector in the building). Thus for a

given task, there can be a general template,

say, “Give a presentation,” in which the

“projector” slot is constrained to accept

any projector that the user chooses; or a

more specific template, say, “Give a

presentation in Room 227,” with the

specific projector for that room already

filled in.

Templates must be instantiated by users by

filling in their slots to make them concrete

(e.g., a file to view must be specified; if a

constrained slot is not fully specified, a

selection from components that match the

constraints must be made). In the language

of the browser, when a template is fully

instantiated, it becomes a “task” and can

be found on a list of “current” tasks. Unlike

in direct connect mode, where users have

an unconstrained set of components avail-

able for selection at all times, a particular

template will constrain the components

available at any given time according to the

semantics of the template.

The browser is designed to support the

creation of new templates by example.

Users can modify existing tasks by adding

and removing connections and compo-

nents, as well as by changing the compo-

nents with which the slots are instantiated.

At any point, tasks (as well as connections

made directly) can be saved as templates.

When saving, users are presented with a

dialog that allows them to (optionally)

generalize each slot according to

constraints such as “accept components

whose type is ‘Projector’” or “accept

components whose owner is the current

user.” Currently we do not support creating

templates from scratch, though we plan to

support such a feature in the future.

We contend that templates fill an important

niche in dynamically changing computa-

tional environments, because they stand in

a middle ground between completely

unstructured interaction with individual

components and a predefined, potentially

inflexible application written by a developer.

Templates impose a layer of semantics on

top of the raw facilities offered by the infra-

structure, and assist in sensemaking by

constraining the choices available to the

user to only those components appropriate

for the task at hand. They also make it

possible for more guided forms of user

interaction such as the wizards and form-

filling styles mentioned earlier.

Furthermore, the ability to potentially share

these templates between users could even-

tually support communities that share and

exchange useful templates [12].

DESIGNING AND TESTING THE

BROWSER

The design and development of the

browser application emerged in parallel

with the evolution of the underlying infra-

structure. The purpose of deploying and

testing the browser was twofold. First, we

wanted to confirm that the core concepts

of components, connections and context in

Speakeasy were understandable to users

and could be conveyed in a simple inter-

face on a resource-poor environment such

as a handheld device. Second, we wanted

to validate the viability of our recombinant

programmatic interfaces at the engineering

Figure 1: The browser’s component selection screen,
shown here grouped by location (above) and owner
(below)

152 | DIS2002

level. Thus we designed and tested two

versions of the browser. The first consisted

entirely of mockups, and focused on the

core application concepts and their presen-

tation to the user. The second version was

a functional version of the browser that

communicated with the set of “live”

components (such as projectors, printers,

cameras, and the like) we had already built

during earlier phases of the Speakeasy

project.

We began our design exploration with

sketches on paper (see Figure 2) to outline

core aspects of the browser’s functionality,

such as finding, connecting, and controlling

components, as well as the notions of

tasks and templates. These sketches

allowed us to develop the basic UI

concepts of connections and templates, so

that we were able to evolve the general

task “Give a presentation in the Oasis (a

conference room)” into the following

scenario:

Pat, a manager, is planning to give a

presentation in the Oasis later in the

afternoon. Pat brings up the

Speakeasy browser on a PDA, goes to

a list of templates and chooses “Give a

presentation.” The template configura-

tion screen appears, and Pat selects

“File name: Choose” to bring up a list

of components including Pat’s file

space. After selecting a PowerPoint

file, as prescribed by the template, Pat

is returned to the template configura-

tion screen with the name of the speci-

fied file filled in (as in Figure 3). Next,

Pat selects the slot for the Projector

and is shown a list of projectors,

arranged by location in the building.

Pat selects the projector in the Oasis,

at which point slots for controlling the

projector and for controlling lights in

the room are also filled in with defaults

specified by the template.

Having finished configuring the

template, Pat names the task “Give a

presentation in the Oasis” and places

the task on standby. That afternoon,

she takes her PDA to the Oasis, and

uses the browser to select the task

from the list of current tasks and

chooses to “Run” it. The controls for

the components involved in the task

appear in the browser and she is able

to dim the lights and control the

presentation (e.g., advance to the next

slide, return to a previous slide, etc.).

After several iterations of the sketch-based

prototype, we split the effort into two

parts—one effort began developing the

backend functionality of the browser, such

as discovering components and making

information about them available to our

Web application, and the other effort

focused on refining the browser’s user

interface.

This latter effort began by developing a

higher-fidelity, interactive, “mockup” proto-

type in HTML. We developed the prototype

and iterated on it, gaining valuable experi-

ence by employing walkthroughs and user

evaluations between iterations. In order to

simulate an environment in which a myriad

of components would be available, we

populated the mockup with several dozen

components to choose from, as well as

about a dozen templates representing

potentially useful tasks (e.g., give a presen-

tation, share my slides, listen to voice mail,

capture the whiteboard, print a document,

etc.).

The fact that the development of the func-

tional version of the browser proceeded in

parallel with the development of the proto-

type meant that design elements from the

prototype could be folded into the “real”

browser as they were established and

tested. At the time of the second evaluation

(described below), most of the features of

the mockup had been implemented in the

browser, though a few key features were

still missing (for example, the ability to filter

out components that are irrelevant or

invalid for a given connection endpoint or

template slot and the ability to define

templates with sophisticated constraints).

TESTING WITH USERS

We performed two sets of evaluations with

users. The first was conducted using the

mockup prototype and the second was

conducted using the functional browser.

For both sets of evaluations, we gave each

person a Pocket PC with Internet Explorer

displaying the start page for our browser

application. Both sets of evaluations were

based on the scenario that we outlined

earlier, namely that of setting up and giving

a presentation using the PDA-based

Speakeasy browser.

First Evaluation

For the evaluation of the mockup proto-

type, we asked users to carry out four

activities, including two drawn from the

scenario above (create a new task from

template and carry out the task by dimming

the lights and controlling the slide presen-

tation) and two others (suspend the presen-

tation to allow a colleague to present, and

connect two components directly—without

a template). We conducted the evaluations

over a two-week period, during which we

continued to iterate the prototype based on

feedback from each evaluation. In all, we

observed seven users attempting to use

the browser in a “walk up and use” test.

With the exception of one user, all partici-

Figure 2: An early, low-fidelity sketch of one of the
screens for the Speakeasy Browser. The sketch was
drawn inside a photocopy of a Compaq iPAQ PDA,
and shows an earlier version of the screen shown in
Figure 1

Figure 3: A partially configured template. In this case
the user has selected the file to be presented but has
not yet selected the projector.

DIS2002 | 153

pants were experienced computer/Web

users (4 were programmers) and familiar

with operating a PDA. The following were

the only instructions that users were

presented with:

This Speakeasy browser allows you to

connect things together wirelessly. For

example, you might connect your PDA

to your stereo in order to control it, or

you might connect your laptop to a

projector in order to display a file.

You do this by creating tasks and

running them. To make this easier,

common types of tasks have

templates, but when there’s no

template, you can also connect things

directly.

With the exception of the inexperienced

Web/PDA user, all users were able to form

a mental model of how the system worked

and how it could be used to complete the

tasks. Although they experienced problems

and uncertainties, the six more experienced

users completed all of the activities

successfully, even in the earliest stages of

the prototype.

Second Evaluation

The evaluation of the functional browser

took place about six weeks later, and

covered two of the activities from the

mockup evaluation (setting up and using a

task), though the instructions to the partici-

pants were worded in a more open-ended

way. Rather than direct them to use a

template as we had done in the first round

of evaluations, we simply asked the user to

present several slides from a recent talk of

their choosing. Six people participated, and

each emailed us the PowerPoint file for

their talk in advance. We placed their file in

a “file space” (a collection of files acces-

sible via Speakeasy) that would be acces-

sible through the Speakeasy browser

before the evaluation session. All were

experienced computer users and four were

programmers.

Users had the option to set up for the talk

by using one of two templates (named

“Give a presentation in Commons” or the

more generic “Give a presentation”) or by

carrying out connections directly. All but

one of the participants elected to use the

more specific template, and were

successful at completing the setup. The

lone participant who attempted to make the

connection directly was unable to complete

the task without intervention. One other

participant initially tried to make a direct

connection but quickly gave up and used a

template. After finishing the setup, all six

users were able to carry out the talk with

ease.

Observations

Participants in both studies demonstrated

significant confusion when presented with

large numbers of available components,

particularly when the components were not

relevant to their current tasks. We had

suspected that some form of information

filtering would be important, but we hadn’t

focused on this in our initial designs. After

the first couple of mockup evaluations,

however, it became clear that this was a

significant source of confusion and we

modified the prototype to include better

filtering. For example, we augmented the

functionality of the templates to increase

the “intelligence” with which components

could be filtered, by allowing the inclusion

of constraints based on variables such as

“owned by the current user” or “locations

near me.” In addition, we added assump-

tions about the ability of the browser to

make certain filtering decisions by default,

such as restricting the scope of the compo-

nents shown to those in nearby locations or

within a certain administrative boundary.

These changes considerably reduced the

confusion of later participants in the

mockup study. However, we did not fully

implement the augmented information

filtering capabilities in the functional

browser, and we therefore observed the

exact same confusion as we had during

with the first mockups, thus reaffirming the

importance of filtering.

Different users took different approaches to

complete the task of setting up the presen-

tation. For example, one user was focused

on finding the meeting room in which the

presentation specified by the task was to

be held. She believed that once she found

and selected the room, everything else

would fill itself in correctly. Another user, an

experienced user of Microsoft Office,

believed that if she could just “find

PowerPoint,” she would be able to set up

the presentation correctly. Several users

focused on “finding the file,” and believed

that once they had located their file, the

rest would fall into place. Fortunately, the

browser seemed to support all of these

strategies fairly well, thus supporting our

initial assumption that designing for flexi-

bility in the ways that users organize

components and carry out tasks would be

important.

Another problem we observed was the lack

of feedback about the state of the world

resulting from actions taken within the

browser. When designing the mockups, we

had overlooked this problem in part

because we assumed that in a “live”

browser, actions taken within the browser

such as turning lights on and off or

displaying a presentation on a projector

would have obvious effects on the environ-

ment and would therefore not need to have

their results represented in the browser.

During the evaluation, however, several

participants misunderstood the instructions

for one of the tasks and ended up turning

on a projector and displaying their talk in a

room other than the one in which they were

located. Since the browser did not tell them

what action had been taken and they could

not observe any effects in their immediate

environment (and would not have been able

to do so, even with a “real” browser and

environment), they were understandably

confused about what they had done.

Feedback problems did not disappear

when we tested the functional browser. For

example, after turning on the projector

using the browser, it would take a few

moments to warm up before it would

project an image on the screen. During this

time, some users were not sure whether or

not they had performed the correct action

to turn on the projector and whether the

system had successfully carried out their

action. There was no feedback from the

browser to allay either of these uncertain-

ties. (It should be noted, however, that the

remote control normally used to turn on the

projector does not fare any better in this

regard.)

DISCUSSION AND OUTSTANDING

ISSUES

A key motivating question for our work in

this area was the issue of how to effectively

design user interfaces that would inherently

support “serendipitous” discovery of avail-

able resources and co-adaptation of tasks.

While we believe that we have taken signifi-

cant steps in this direction, the very nature

of the goal makes it difficult to evaluate.

154 | DIS2002

Because of the limited range of compo-

nents we had developed so far, the tasks

assigned to our users were by necessity

quite constrained and limited in scope.

Indeed, by their very nature it is difficult to

dictate “serendipitous tasks” to test

subjects. Rather, these types of interaction

arise out of natural, day to day contact with

the technology. Our ultimate goal, natu-

rally, is to develop our system to the point

where it is mature enough, and with a rich

enough complement of components, to

widely deploy in our lab so that our users

can use the system in an unstructured way.

Nevertheless, the deployment and testing

of the Speakeasy browser provided us with

important information regarding the engi-

neering concepts of recombinant

computing and towards user interaction

issues in our environment. This discussion

focuses on the latter.

We believe (and participants in both studies

agreed) that we ended up with a usable

browser as well as a substantial list of addi-

tional possible improvements. However, we

further believe that some of our experi-

ences have implications beyond the

specific browser application described in

this paper. As mentioned before, we believe

that browser-style applications that allow

users to discover and interact with arbitrary

devices and services in an ad hoc fashion

will play an important role in future ubiqui-

tous computing environments. In the

absence of specialized applications for

every conceivable task, a more generic

tool—one without specialized domain

knowledge—will necessarily play a part. In

this section, we explore some potential

implications of our work on this wider class

of applications.

TASK-ORIENTED TEMPLATES PROVIDE

BENEFITS

Task-oriented approaches to presenting

information are commonly found in instruc-

tion documentation, where, for example,

task-oriented documents have been found

to improve the productivity of users signifi-

cantly and are strongly preferred over

feature-oriented documents [15]. One of

our main questions was “Would this hold

true when the tasks were as diverse as

might be encountered in a ubiquitous

computing environment?”

Users experienced far greater success in

accomplishing tasks when they used

templates than when they did not. Task-

oriented templates helped with sense-

making, since they informed the user about

what kinds of components they could

expect to find and what kinds of actions

would be appropriate with them.

In some sense, templates serve as a light-

weight middle ground between dedicated,

domain-specific applications and fully

general access to components (as is avail-

able in our “direct connect” mode).

Templates capture certain domain seman-

tics – what components are appropriate for

a particular task, what constraints are

salient for them, how they should be

connected – without requiring full-fledged

programming on the part of a developer or

user.

An interesting question is, “What is the right

level of generality for templates?” If you

have five meeting rooms it is reasonable to

imagine that you would have custom

templates for each room to allow users to

give presentations, print documents,

capture the whiteboard, etc., in each

meeting room. What if you have 30 meeting

rooms? 200? Are there designs that avoid

(a) overloading the number of templates,

thereby making it difficult to locate and

choose the one relevant to your current

task, and (b) overburdening the user by

forcing manual configuration of too-general

templates?

INFORMATION FILTERING IS

IMPORTANT

In rich environments, some form of infor-

mation filtering is crucial. In our experi-

ments, the set of components could be

filtered by the type of the component

(projector versus printer, for example), as

well as location, owner, and other contex-

tual attributes. An interesting research

question remains: what attributes are most

useful, and for what tasks and types of

components? These attributes must be

reflected in the constraints provided by the

templates, and thus have implications for

infrastructure builders.

Further, our information filtering was only

static—components did not update their

contextual information, and the organiza-

tion of components was not responsive to

the user’s current context. We believe a

more dynamic approach to information

filtering, in which the organization

presented to the user is tailored to the

user’s location, history, and tasks, could

prove useful. This remains an interesting

avenue for future research.

SUPPORT MULTIPLE STRATEGIES FOR

CARRYING OUT ACTIONS

Different people take different paths to

carry out the same task. In our studies, we

saw approaches that can be described as

location-, data-, and device-/service-

centric. We were pleased to observe that

our browser supported each of these

strategies fairly well.

Several users noticed that they could apply

different metadata-based groupings to the

components when searching for them.

These users were consistent about

grouping by location when searching for

things like the projector control and the

PowerPoint Viewer (in other words, compo-

nents with a physical embodiment or

effects that would be tangible in a particular

space), and grouping by owner when

searching for files. It remains to be seen

whether other types of metadata (e.g.,

frequency of use) will prove valuable for

other types of components.

The ability to discover and organize

components based on more than just

simple location seems important. We were

interested to discover that our users made

use of remote components (such as files on

their desktop machine), perhaps indicating

that proximity-based networking technolo-

gies may be insufficient for many users’

needs.

GIVE REDUNDANT FEEDBACK ABOUT

THE STATE OF THE WORLD

In both sets of evaluations, it was clear that

the lack of feedback within the browser

about the results of users’ actions was

problematic. Users lacked confidence in

the results of their actions, not only when

the effects of their actions were invisible

from the current location, but even when

those effects could, in principle, be

observed locally. The latter might occur

when there is a failure in some other part of

the system (e.g., a service failure or discon-

nected cable), or because the effects of an

action are not immediately apparent (e.g.,

projector is slow to warm up).

DIS2002 | 155

While so-called “invisible interfaces” have

been espoused by some in the ubiquitous

computing community, we feel that users in

such environments will need more tangible

feedback and control, not less. For

example, being able to ascertain what

components are currently doing would be

valuable for users attempting to discover

whether components are available for their

use, and what communication between

components is taking place. We have

recently added a facility for determining

such information to the core infrastructure,

although it is not yet accessible through the

browser.

The need for effective, continual feedback

about the state of the world and the results

of actions in a dynamic setting where

components may come and go, failures

may occur, and the state of the world may

change rapidly, suggests that “pull”-

oriented UI technologies (such as the Web),

may be inadequate. We plan to investigate

other implementations to better understand

the tradeoffs involved.

TINY LAPTOP OR BIG REMOTE

CONTROL?

There was quite a bit of variability among

the participants in terms of their expecta-

tions about the degree of automation

provided by the browser and/or environ-

ment. For example some users, after

having selected the file for their template

and “run” the resulting task, expected to

have to turn on the projector manually and

actively searched within the browser for the

projector controls. Other users expected

that the projector would be automatically

turned on for them and set to the correct

input, and were utterly mystified when this

did not happen. One member of this latter

group thought that if he could just “open”

his file, everything would just work. This

sentiment was similar to that expressed by

the participant in the mockup study who

said, “I just want to choose one button and

have it work.” Tantalizingly, these expecta-

tions of greater automation seemed to

come more readily from participants with

less computer programming background,

perhaps suggesting that users who are less

familiar with the limitations of technology

were more inclined to have higher expecta-

tions about its capabilities.

Another way of explaining these differ-

ences, however, is that users’ attitudes

might have been conditioned by their

perception of what this particular applica-

tion running on this particular device was

most like. The users who expected more

automation seemed to also follow a model

of how they would perform the task using a

desktop or a laptop computer. They

expected that once they found their file,

they could just “open it” as one would do

by double-clicking in the Windows Explorer

or the Macintosh Finder. On the other hand,

users who expected less automation

seemed to regard the browser as some-

thing more like a sophisticated remote

control, where the main advantage of the

browser was that it provided convenient

access to controls for the various devices

and services. Upon reflection, we realized

that the latter model is more akin to what

we, the designers, had in mind, but the

former model is also quite compelling and

we plan to investigate adopting some

aspects of it in the next version of the

browser.

The challenge here is to understand, and

hopefully even exploit, users’ expectations

about the affordances of an environment,

based on the device they use to interact

with that environment. Different models are

possible, and may be more or less advan-

tageous in certain circumstances.

CONCLUSIONS

We have described a possible future in

which arbitrary devices and services can be

interconnected and used without prior

knowledge of one another. We believe that

such a world will bring with it a host of

questions about what user actions can—or

should—be supported: how will users

discover the devices and services that are

around them, and how will they organize,

understand, and ultimately use these

devices and services to accomplish some

task?

The browser described in this paper is a

first attempt at exploring issues of user

experience in a radically interoperable and

dynamic world. While perhaps limited, we

believe that our experiences with this tool

have nonetheless yielded interesting

results, and point the way toward further

improvements in not only the user inter-

face, but also in the underlying recombi-

nant infrastructure we are using and

developing.

156 | DIS2002

REFERENCES
1. Abowd, G.D., Classroom 2000: An Experiment

with the Instrumentation of a Living Educational
Environment. IBM Systems Journal, Special issue
on Pervasive Computing, 1999. 38(4), 508-530.

2. Ascher, D. and M. Lutz, Learning Python.
Sebastopol, California: O’Reilly and Associates,
1999.

3. Carroll, J.M., W.A. Kellogg, and M.B. Rosson,
The task-artefact cycle.In Designing Interaction:
Psychology at the Human Computer Interface,
J.M. Carroll, Editor. Cambridge University Press:
New York. p. 74-102, 1991.

4. Cycling ‘74, Max.
http://www.cycling74.com/products/max.html

5. Edwards, W.K., M.W. Newman, and J.Z. Sedivy,
The Case for Recombinant Computing. Technical
Report CSL-01-1, Xerox Palo Alto Research
Center, Palo Alto, CA, April 20, 2001.

6. Englander, R., Developing Java Beans.
Sebastopol, California: O’Reilly and Associates,
1997.

7. Gamma, E., R. Helm, R. Johnson, and J.
Vlissides, Design Patterns.Addison-Wesley, 1995.

8. Huang, A.C., B.C. Ling, J. Barton, and A. Fox.
Making Computers Disappear: Appliance Data
Services. In Proceedings of 7th ACM/IEEE
International Conference on Mobile Computing
and Networking (MobiCom 2001). Rome, Italy,
July 2001.

9. Iseminger, D., COM+ Developer’s Reference.
Microsoft Press, 2000.

10. Kidd, C.D., et al. The Aware Home: A Living
Laboratory for Ubiquitous Computing Research.
In Proceedings of Second International Workshop
on Cooperative Buildings 1999.

11. Mackay, W.E. More than Just a Communication
System: Diversity in the Use of Electronic Mail.
In Proceedings of Conference on Computer
Supported Cooperative Work. Portland Oregon:
ACM, 1988.

12. Mackay, W.E. Patterns of Sharing Customizable
Software. In Proceedings of Conference on
Computer Supported Cooperative Work. Los
Angeles, California: ACM, 1990.

13. Newham, C. and B. Rosenblatt, Learning the
bash Shell. Sebastopol, California: O’Reilly and
Associates, 1995.

14. Norman, D., The Invisible Computer. Cambridge:
MIT Press, 1998.

15. Odescalchi, E.K. Productivity gain attained by
task-oriented information. In Proceedings of 33rd
International Technical Communication
Conference. Arlington, VA USA: Society for
Technical Communication, 1986.

16. Perry, B.W., AppleScript in a Nutshell.
Sebastopol, California: O’Reilly and Associates,
2001.

17. Salber, D., A.K. Dey, and G.D. Abowd. The
context toolkit: aiding the development of
context-enabled applications. In Proceedings of
Conference on Human Factors in Computing
Systems (CHI ‘99). Pittsburgh, PA USA. pp. 434-
441, May 15-20 1999.

18. Savolainen, R., The sense-making theory:
Reviewing the interests of a user-centered
approach to information seeking and use.
Information Processing and Management, 1993.
29, 13-28.

19. Waldo, J., The Jini Architecture for Network-
centric Computing, Communications of the ACM,
76-82, 1999.

20. Weiser, M. and J.S. Brown, The Coming Age of
Calm Technology. 1996.
http://www.ubiq.com/hypertext/weiser/
acmfuture2endnote.htm

