Design, Learning and Collaboration (DLC)

Independent Research Final Report

 End User Design
Professor Fischer/Hal Eden

Spring 2006

Team Members:

Cortney Germain

Matthew Hung

Mark Lewis Prazen

Table of Contents

ABSTRACT …………………………………………………….………………………. 3
1. INTRODUCTION ……………………………………………………………………... 4

2 The Critical EUD Design Principles and Trade-offs Uncovered in Our Research ………………………………………………………………………………...…4

2.1 Design Principles………………………………………………………………………4
2.2 Linkage between Sound Principles and Balance in Trade-offs ……………………...5
3. EUD Tool Examples ……………………………………………..……………………..6

4. Quality Considerations in EUD ………………………………………………………..8

5. Future Directions …………………………………………………….………….……. 9

6. REFERENCES …………………………………….………………………………….11
APPENDIX A - THE Detailed Discussion of Automator Features

Abstract

As a distinct design topic, end-user design (EUD) is rather new to computer science, although it is implicitly embedded in many existing design concepts. What makes EUD different from other such topics is that, in traditional software design terms, users are experts in their tasks, and good tools are typically constructed to match these tasks. Conversely, end-user designers are trying to complete design tasks in which, by definition, they are not experts. Therefore, the dominating design goal of EUD tools is to compensate for a discrepancy between the user’s expertise and the design task to be performed.
The purpose of this research paper has been to explore both the history of end user design in the computer science field as well as to attempt to understand the current state of tools for supporting end user design in both research and commercial settings. Our goal is to garner an understanding of the process and tools both as an extension of our classroom experience in this course, but also, as knowledge that we can take away and utilize in our personal and professional endeavors.
END USER DESIGN

 (Submitted as Final Independent Research Paper and Presented in Class on April 17, 2006)

1. Introduction

As a distinct design topic, end-user design (EUD) is rather new to computer science, although it is implicitly embedded in many existing design concepts. What makes EUD different from other such topics is that, in traditional software design terms, users are experts in their tasks, and good tools are typically constructed to match these tasks. Conversely, end-user designers are trying to complete design tasks in which, by definition, they are not experts. Therefore, the dominating design goal of EUD tools is to compensate for a discrepancy between the user’s expertise and the design task to be performed. End-user design is about taking control—not only of personalizing computer applications (end-user computing) and writing programs, but of designing new computer-based applications without ever seeing the underlying program code. While technology has delivered the potential for end-user control, for many end users it is still too difficult to use.
EUD covers a wide area of interests ranging from customizing applications by inputting parameters or style sheets, to controlling a complex embedded device (for example, a factory manufacturing robot), to writing code, testing the correctness of the application and scripting interactive Web sites. The goal of end user design is to allow users to design and create their own programs without the need for outside design support. The risk is that in off-loading design efforts to end users, these end users must then learn the intricacies of the programming language. Additionally, this transfer of control brings with it the additional problems of monitoring, quality assurance and control. Hence, managing the EUD process successfully poses significant challenges to a project team.
EUD, however, is not just about making programming easier. It also requires field studies to explore how users deal with complexity, using psychological theory to guide the design of EUD tools and processes.
2. The Critical EUD Design Principles and Trade-offs Uncovered in Our Research

2.1 Design Principles
Many of the design principles noted below are interrelated. Hence, addressing one feature often also addresses or competes with others or incorporates features of the others in its implementation. For example, a design that takes usability into consideration would also need to incorporate usefulness features into the design. Usability features would include clear labeling and orienting skilled users whereas usefulness would make sure that labeling and navigation tools are placed in the same location throughout the site to help novices. Another set of criteria that should be included together would be simplicity and coherence. Simplicity deals with the basics with a simple structure, color & type styles and short text lines. Coherence goes one step further to stress the need to eliminate extraneous material such as irrelevant steps and processes as well as explanatory material that is more in-depth than necessary.

2.2 Linkage between Sound Principles and Balance in Trade-offs
As always, there are trade-offs associated with design principles and EUD is no exception. Some of the more critical design principles or tensions are described in detail below:

Flexibility versus Complexity
Making an EUD tool too general runs the risk that it will be difficult to learn and require a significant investment on the part of the designer in order to apply the tool to a specific problem domain. This is the complaint many current end users bring up with respect existing programming languages like Java and C++. Conversely, tools that are very domain-centered typically have small applicability across domains, making them more expensive and less profitable from a development and marketing perspective, and consequently less attractive to build and maintain as software products from a vendor perspective.

Several researchers have sought to reduce the learning curve by creating design environments that do not require users to program per se; instead, they design by instructing the computer to learn from examples [3] or by interacting with graphical micro worlds representing real domains. Thus, EUD becomes a two-phase process: designing the design world, followed by designing the applications that interact with the design world. This concept—metadesign— is explored by Fischer et al. [7] at some length. The creation of such design worlds is explored in work by Repenning and Ioannadou [15]. Other techniques to address this gap between needed and existing skills as embedded agents in a new class of proposed design tools have included technologies for component-based design environments, help wizards, libraries of patterns, and templates.

Freedom in Design versus the Need for Control
The need to control development environments in order to minimize risks has been a long running tenet of successful software engineering. Creating maintainable software and eliminating inaccurate and contradictory information, it is argued, requires control processes that are often ceded to users when the design tasks is moved to the user domain. The argument is that such end users, without sufficient training in SDLC concepts and respect for this process, will lose control of quality during the design process. This tension between quality assurance and design freedom will always color advances in EUD, but new approaches are emerging.

Various technical approaches to address control concerns and improve ease of use include active help to catch programming mistakes (Burnett et al.[3]); programming by composing designs from components; development driven by interacting with diagrams as specifications; and programming environments that guide the user (Burnett et al.[4]) through the debugging and testing processes.
Motivation to Learn versus Need to Add Value
The motivation of the end user to learn the tools necessary to successfully develop an end user application has been discovered to be a critical issue, though it is one which till recently, received little attention in the research. End users have a bias toward action, which makes the investment to learn the tools and processes necessary to successfully implement an application one many end users have little patience for, particularly when they cannot see an immediate payoff. This issue has been continually cited as a key reason for failure on end user design projects that fail to meet pre-ordained objectives. Therefore, techniques to properly motivate and incent end user designers in the critical early stages where the learning burden is immense, but the commensurate return in output is minimal, is critical to the success of such tasks.

Use of Visual Graphical Design Worlds
Graphical design worlds have been shown to better mediate the physical process of design. While visual modeling techniques have been increasingly adopted for the software design process, they are still far from where they ideally should be. Current visual represent-tations are still not easy to develop, analyze, and modify, especially when sizeable work is involved. When the visual model increases in complexity, designers must interact with many graphical interconnected symbols that typically are difficult to understand.
While the above are not meant to be an exhaustive list of design principles central to a successful EUD implementation, these are some key principles typically cited in the literature, along with, where applicable, competing issues necessary to understand in the successful application of such principles to an actual implementation.
3. EUD Tool Examples
During the process of researching EUD applications and environments, we were particularly struck by two developing trends in such tools: (1) the increasing interest in sophisticated user tools for simulations that function as EUD environments and offer end users a rich source of tools and design freedom in a relatively riskless environment, and (2) the growing use of collaboration tools such as Wikipedia, which providing an ever expanding array of EUD capabilities to foster creative learning and design and provide end user communities as sources of support and refinement for individual end user designers. We explore several tools briefly below to examine their capabilities, features and the support environments that make them, in our opinion, end user design tools. When students and practitioners are charged with the design and deployment of such tools in real-world scenarios and allowed to collaborate socially with other users across a community to generate rich and robust environments, creativity is fostered as actual problem domains and the choices in them become better understood. This, in turn, fosters conceptual learning among all users in the community and raises learning to a new level.

Automator

Automator is a scriptable application, distributed, intelligent EUD tool provided for user to modify the OSX system. Automator comes with a library of built in action. An action is an item which performs a single, specific task. An action can process the information that comes from the previous action and/or pass the information to the next action. By processing the information, an action can change the type of the information (e.g. text to audio action). The information that an action can process/pass may come from other applications or the OS system. (address book group, itunes playlist, items selected in the Finder). An action can also change the status of the other application or system. Actions are divided into two categories: (1) Ones that do not require additional information or input (stop ITune), and (2) actions that do require more information. (For more detailed information and analysis on this tool see Appendix A).
Automator represents the vanguard of universal end user tools: we can envision that more and more software packages will provide Automator action models for the end user to utilize. Therefore, the end user can blend actions from different software packages to create highly specified new tools that more closely mirror and match personal needs. http://www.barebones.com/products/bbedit/automator.shtml
Second Life
Widely disparate communities have evolved around the use of end user design principles, from interactive art to complex gaming and simulation virtual worlds to tools for knowledge exchange. The further evolution of such tools offers a means to project thoughts and designs into new problem spaces.

Second Life represents such a simulated environment, not unlike the EDC, but on-line, and a 3-D virtual world entirely built and owned by its users. It is the embodiment of a digital continent that users occupy and where they meet people, build communities, start businesses, and build their lives. Residents retain the rights to their digital creations and are allowed to buy, sell, and trade property. It is built around a fully integrated economy where the end user is tasked with designing a life, and where risk, innovation, and craftsmanship are rewarded and fostered in an integrated, simulated economy.
Various companies have used Second Life as a platform to enhance various aspects of their businesses. Some have built large-scale games around their brand while others are in the process of integrating Second Life into their operations as both a communication and collaboration tool.

Programming By Example
Programming by Example utilizes a number of approaches to create programs by giving examples of their behavior. All the approaches use specific examples rather than describing a procedure in abstract terms. The earliest approach, Programming by Input/Output Examples, relies on the system's ability to generalize from presented examples. The programmer provides examples of data before and after processing; the application finds a method for transforming the input to the output.

A more recent approach, Programming by Demonstration, requires the end-user to demonstrate actions on example data; the application records and generalizes from these examples. Another approach is Programming by Teaching (also known as Instructing Agents), that builds on the Programming by Demonstration approach and allows users to give verbal hints. These focus the application’s attention on relevant generalizations.

Application environments such as Automator, Second Life, EDC and Programming By Example provide interactive environments for end user designers to participate, contribute, visualize the context of problem spaces, either real or imagined. The important and unique features of such environments is that they themselves do not necessarily provide actual solutions to the problems at hands (though they may propose possible solutions), but rather act as a social interaction environment and medium to allow interested and motivated end users to explore their problem and devise meaningful solutions by providing end user design tools and techniques to interested participants.
Other EUD environments such as AgentSheet[15] offer simulation capabilities on a different level, known as agent-based EUD. The goal of agent-based end-user design is to empower end users with agents that they can instruct directly. This process of instruction is not hidden from the user so the user can easily customize his agents to achieve his tasks. This tool allows end users to gather information in a dynamic internet environment and help users to process this automatically and has become an important medium for end users. AgentSheet provides a grid-like work space (similar to spreadsheet) and end-user programmable agent objects to help users gather, filter, and process the information in ways that make sense to the end users. The end user can also build interactive simulations to help people communicate with each other in ways that better allow the exploration of complex problem spaces. AgentSheet combines java authoring, end-user programmable agents, and spreadsheet technology to provide an end user environment that individuals and groups can use to build web-based simulations.
4. Quality Considerations in EUD
Regardless of creativity, however, only good quality end user applications can provide the benefits noted above and meet the lofty objectives that justify the additional expenses that organizations will typically incur to initially implement them. Lavi [8] identifies several quality risks of end user development system design:
· Over-analysis and inefficient search for the solution

· Application of the wrong analysis or model

· Solving the wrong problem
· Lack of well understood and implemented version controls

· No extensive testing

· Little validation and input output checks

· Redundant design effort

· Threats to data security and integrity.
Several recommendations are suggested to mitigate these risks:

· More management involvement in quality issues

· A formal quality assurance review process

· Make a quality assurance group available to the end-users

· Implement joint application design reviews
· Provide high quality generalized quality control modules to end-users.
The dependability of the end user programming is extremely important since the cost of fixing errors in the process after the fact is a significant concern to the organization. In order to improve the dependability of the end user design, Burnett and Rothermel have suggested “end-user software engineering” [3]. Instead of introducing the tradition way of software engineering to the end user, which is typically more time-consuming and expensive, “end-user software engineering” is implemented in an iterative and interactive way by hiding the system details from the users. This provides a means for the user to collaborate with the system while improving the dependability of the end user program. There are four components in their approach:
1. An interactive testing methodology to help end-user programmers test

2. Fault localization capabilities to help users find the faults that attesting may have revealed
3. Interactive assertions to continually monitor values the program produces, and alert users to potential discrepancies

4. Motivational devices that gently attempt to interest end users in appropriate software engineering behaviors at suitable moments (like a critiquing techniques introduced by Fischer, et. al. [5] or wizard tool as suggested by Beringer [1]).
5. Future Directions
With respect to the future, the impact and direction of EUD is not entirely clear. Burnett et. al. [3] envision the future EUD system should be “blending specification, design, implementation, component integration, debugging, testing, and maintenance into tightly, integrated, highly interactive environments”. Many universities are joining forces to explore different problem spaces in the EUD field including the End-User Software Engineering project at Oregon State University focused on improving the dependability of end user programs and the Natural Programming Project at Carnegie Mellon University which is working on the creation of more effective tools for supporting the editing and construction of code. Penn State University has a project known as Informal Learning in Software Construction which emphasizes the creation of mental models of web software construction for sophisticated end users, and is using these results to develop a tool for building simple web applications.

With respect to the future, the direction of EUD is not entirely clear. In Nardi’s work [10], she envisions two likely scenarios where EUD will grow in prominence in computing: one where the computer applications (called agents) interact with and perform automation tasks for end users. Another area will be in the area of simulation and riskless learning where individuals will build their own computer simulations. The difference between these two visions is highlighted by the question the author asks: “How do we want computers and humans to interact?”. There are two overriding possibilities: one where a human directly interacts with a computer and the other where a human interacts through agent intermediaries.
Most of the research we have reviewed suggests that the conversations between human and computer will be central to the future of computing. It is interesting that Nardi [10] opposes this idea by proposing that a formal language be used in the end user programming system. She argues that the formal language, “Once learned, provides a simple, concise way of communicating information related to a specific topic”. She also promotes the concept of the formal language to help the end user to better fulfill their goal. This vision of a formal language has been discussed in the literature before as of a “textual, visual or auditory form”. Also introduced as future possibilities for EUD are concepts such as interaction techniques, visual programming, forms-based systems and programming by example modification, both by Nardi and others. By combining multiple interaction technologies, it is thought that designers will be able to create more robust and usable systems for the end users. One such possibility suggested by Nardi and others is a hybrid system that consists of a visualization system that represents the user’s task and an embedded formal language in this system that supports the user’s task activities.
While future directions are intriguing and thought provoking, the main idea that our team researched was design principles applicable to end user design environments. While the idea was discussed frequently in the classroom setting, a variety of articles cited in this paper support many of the principles discussed in our paper. We also have noted how we applied these design principles in our project. As a team, we learned a great deal about end user design for both as an evolving concept, but also as tools currently embedded in certain application environments. Our independent research has afforded us the opportunity to reflect on our work here and in other facets of our lives, but moreover, provided us with valuable design considerations to enhance our learning experience in other environments.

6. References

[1] Beringer J., “Reducing Expertise Tension,” In Communications of the ACM, 47(9), pp. 1-24, 2004.

[2] Brancheau, J.C., and Brown, C.V. The management of end user computing: Status and directions. ACM Computing Surveys 25, 4 (1993),

437–482.

[3] Burnett M., C. Cook, and G. Rothermel. End-User Software Engineering; Communications of the ACM, September, 2004, pages 53-58.

[4] Burnett Margaret, Brad Myers , Susan Wiedenbeck , Mary Beth Rosson, The Next Step: From End-User Programming to End-User Software Engineering, WEUSE II Workshop at CHI 2006, http://eusesconsortium.org/weuse/docs/chi2006Burnett-exAbstract.pdf,
[5] Fischer G. and A. Girgensohn. End-user modifiability in design environments, ,CHI90, 1990,P.183- P.192. http://portal.acm.org/ft_gateway.cfm?id=97272&type=pdf&coll=GUIDE&dl=GUIDE&CFID=73628203&CFTOKEN=51547662.
[6] Fischer G., E. Giaccardi, H. Eden, M. Sugimoto, & Y. Ye, (in press). "Beyond Binary Choices: Integrating Individual and Social Creativity," International Journal of Human-Computer Studies, Special Issue on Creativity (Eds: L. Candy and E. Edmond), 2005, available at: http://l3d.cs.colorado.edu/~gerhard/papers/ind-social-creativity-05.pdf

[7] Fischer G., E. Giaccardi, Y. Ye, A. G. Sutcliffe, & N. Mehandjiev, "Meta-Design: A Manifesto for End-User Development," Communications of the ACM, 47(9), pp. 33-37, 2004 available at: http://l3d.cs.colorado.edu/~gerhard/papers/CACM-meta-design.pdf

[8] Lavi M.. Some Thoughts on Quality Issues of End-User Developed Systems, Special Interest Group on Computer Personnel Research Annual Conference, Proceedings of the twenty-first annual conference on Computer personnel research table of contents, 1985, P200-P207.

[9]Lieberman, H. Your Wish Is My Command: Programming By Example. Morgan Kaufman, San Francisco, CA, 2001.

[10] Nardi B.. Book review: A small matter of programming: perspectives on End User Computing, MIT Press 1993 and Rebecca E. Grinter, ACM Press, 1994, Volume 26, Issue 4, P.80-P.81
[11] Norman, D. Cognitive engineering. In D. Norman and S. Draper,

Eds., User Centered System Design: New Perspectives on Human-

Computer Interaction. Erlbaum, NJ, 1986, pp. 31–62.

[12] Norman, D. The Design of Everyday Things. Basic Books, 1988.

[13] Paterno F., Markus Klann, Volker Wulf,Research. Agenda and Roadmap for EUD, http://giove.cnuce.cnr.it/EUD-NET/d1.1-1.2.htm, 2002.

[14] Powell A., and J.E Moore. The focus of research in end-user computing:

Where have we come since the 1980s? J. End User Computing 14, 1 (2002), 3–22.

[15] Repenning A. and Ioannidou, A., & Zola, J. (2000). AgentSheets: End-User Programmable Simulations. Journal of Artificial Societies and Social Simulation, 3(3).
[16] Robertson T., Shrinu Prabhakararao, Margaret Burnett, Curtis Cook, Jeseph R. Ruthruff, Laura Beckwith, and Amit Phalgune. Impact of Interruption Style on End-User Debugging, CHI2004, http://interruptions.net/literature/Robertson-CHI04-p287-robertson.pdf
[17]Schaal, David

http://rintintin.colorado.edu/~schaal/net/community.html
[18]Simon H. A., “The Science of Design: Creating the Artificial,” In The Sciences of the Artificial (3rd Ed.), Cambridge, MA: The MIT Press, 1996, pp. 1-24.

[19] Winograd T. and Flores, F. Understanding Computers and Cognition: A New Foundation for Design. Addison-Wesley, Reading, Mass., 1987.
Appendix A

Detailed Discussion of Automator Features

Workflow

You can treat a Workflow as a document that accomplishes a task. Workflow consists of a sequence of actions. Each action represents a step in a task. The user can rearrange the order of the actions placed in the workflow area at the right side of the Automator. Workflows can be saved and used repeatedly, as well as shared with others. When the workflow is executed, it runs all the actions sequentially. The user can copy/delete/ modify the action under its rules.

Sharing Workflows/Actions

Many online forums / communities exist to provide an experience exchange environment for Automator users. In these communities one can download other users’ workflows or ask questions about how to use Automator to solve specific problems. End user designers can tap these communities to utilize the programming by example approach. The novice user can download other workflows and learn from them. Because the actions of the workflows are transparent to the other users, they can learn from other users’ workflows or modify others workflow to fit their needs. This is similar to the stable modules stage that we talked about in the class that are crucial to good design.

Advanced User Applications

The Automator is a scriptable application that a programmer can use with Apple script to create new actions for the end users to create more powerful workflows to fit their needs. Automator can also use Unix commands and shell scripts.

How does Automator stack up as an end user development tool?

· It has a visually appealing interface, drag and drop scripting, and also uses WYSIWYG principles. However, it still lacks intuitive features for the end user to get started and properly introduce him/her to the environment at the outset. Additionally, since the tool assumes sequential workflows and doesn’t have any conditional logic features to deal with different courses of action, the Automator can’t deal with tasks that are too complex.
· The tool lacks critical feedback/critiquing capabilities. When you add a new action that is going to change the property of the objects passed by the previous action, the Automator will prompt you to add an additional action to save a copy of the original objects. Therefore you can apply the changes on the copy of the original object. However, there are few explanations provided by the tool. When mistakes were made during the process of constructing workflow, the Automator didn’t provide error prevention cues nor make suggestions for corrective action.

· The tool has certain dependability features including those provided through the collaboration of the community members, since you can upload your designs to the public space for other users to critique, comment on and test out. This is similar to the validation and review forums provided by the open source software communities.
PAGE
13

