HW3

Min-Chieh Hung

1. Name the two most important things/concepts that you learned from the reading the chapter “The Architecture of Complexity”

““Complex systems will evolve from simple systems much more rapidly if there are stable intermediate forms than if there are not.” 
“Thus problem solving requires continual translation between the state and process descriptions of the same complex reality.”

1.1. give a one paragraph explanation why you consider these concepts important
 I think to make a complex system function correctly, its subsystems need to function correctly first. Once the subsystems work fine, even if you build something upon these subsystem fails, you can quickly re-construct a new system upon these subsystems without rebuilding your subsystems again and again. This is not only saving our time but also gives us a idea what works and what doesnt. Therefore we can apply these experience to furture construction. This is the advantage of the modulization which in the paper is called the nearly decomposable system. The 2nd concepts is important for the programmer like me to solve a problem. Sometime when I analyze a problem deeper, I find some new requirements need to be implement or a new approach can be applied. then I have to go back and forth to change my diagrams and modify the code then do user testing. Therefore this is a iterative approach to solve a problem.
1.2. are the concepts relevant to your work, to your interest, …. – if yes, why? 
 This reminds me that when I was in Object-Oriented Analysis and Design class, we view the world composed by objects. To solve a problem, we first wrote use cases to describe the problem domain, then we decompose the problem into objects and represent the interactions between objects/subobjects by drawing sequence diagrams and interaction diagrams based on our use cases. After that, we translate our diagrams into codes. this is an iterative process which matches the 2nd concept above. I first use state descriptions(use cases, diagrams) to represent the problem I want to solve, then translate it into process descriptions(codes). By iterative process, I mean if I find some useful design patterns that I can apply in my code, I will go back and modify the diagrams i just drew. If I want to add some new functionality, I will modify my use case and diagrams first then modify my code. 
 In Algorithms class, we learned divide and conquer method for divide the big problem into smaller subproblems until we can see a solution for the subproblems. Actually this is a very useful and efficient way for problem solving in a collaboration approach. Different experts can take the subproblems in their experties to solve it, and together the big problem can be solved. The solving It also can be apply to the situation which ther e is only single person solving a big problem. In Object-Oriented class, I also learned that instead try to write a lot of code at once(actually it's impossible), I should set up a daily mile stone to implement some of the funcitonalities to achieve the partial goal. This makes sure that I have a certain progress toward the final goal without being overwhelmed by the entire project.
2. What did you learn from the story of Tempus and Hora?

To modulize your work is not only save your time, but also ensure you that what you have done is working. As the paper mentioned, sometimes the problem is too complex for a single human to solve as a whole. However, an appropriate representation/decomposition of a complex problem will make us eaiser to solve it. I think it is the key for mass production. a factory have different producing lines to produce differnt parts of a product, then assembly lines put all the parts together. If we find a part is defected, we can just replaced it with a good part. we dont need to throw away the whole product.

