Gerhard Fischer and Hal Eden: “Design, Learning, and Collaboration” — Spring Semester 2006

Assignment 3

Simon’s “Architecture of Complexity”
Keisuke Nishimoto

1 Name the two most important things/concepts that you learned from the reading the chapter “The Architecture of Complexity”:
1.1 give a one paragraph explanation why you consider these concepts important
1.2 are the concepts relevant to your work, to your interest, …. – if yes, why?
Nearly Decomposable System

The concept of nearly decomposable system gives us the clue to understand seemingly complex dynamic systems. It effectively hides the details inside subsystems and help us comprehend both the entire system and each subsystems. If many natural systems do not reveal near decomposability, it would be almost impossible to understand the theory behind the system and predict the future behavior of it. For example, suppose quantum mechanics is the only theory in natural science. Even though it is one of the most fundamental theories of physics known so far and they govern every object in our world, it is almost useless for predicting the future behavior of objects in macroscopic world. Instead, we have theories suitable for describing our surroundings, such as Newtonian mechanics, electromagnetics, chemistry and biology, as macroscopic approximation of quantum mechanics.

If many of natural and social systems reveal near decomposability, then it would make sense to design computer systems, for which I am studying, to hold near decomposable properties. Actually, Software Engineering is readily embracing this idea. Object-oriented analysis design, software layering and software component are all aimed at reducing the interaction and dependency between subsystems and thus reducing the complexity. This concept is also important to the field of Human-Computer Interaction. A typical example would be the structure of a tool bar in desktop applications. Each bar contains only icons of relevant functions and this helps users locate necessary functions.

State Descriptions and Process Descriptions

I feel that in general people tend to overlook dynamic aspect of a hierarchical system. Suppose a company restructures its internal organization, for cost cut, merger or whatsoever. According to my experience, what the high-level managements do is just to redraw the organization charts, without specifying what each department is responsible for and how they collaborate each other. The result is turmoil within employees arguing on who should do what. The moral of this example is that a system should be described and defined by both its state and process within it.

This aspect is again important to Software Engineering. Unified Modeling Language has two types of diagrams, one depicting the static feature and dynamic behavior of software (and in some case hardware) objects. This concept also differentiates interaction design, which holds both static and dynamic properties, from mere graphical deign, which is static in nature. As mentioned above, dynamic properties are often not visible to users and thus interaction designers should consider how to make such properties easier for users to understand.

2 What did you learn from the story of Tempus and Hora?
The story quantitatively describes the efficiency of modular design and the author argues that this efficiency is also the thrust of the evolution. Maybe it is worth noting that this story assumes one thing without mention; Hora’s assemblies are mutually identical and thus interchangeable. In the past when mechanical parts were not completely standardized, each part had to be tweaked to fit into an assembly. This meant that parts in different assemblies were not compatible. A part X taken from airplane A could not be used to replace the same part in airplane B. However, this would not be a large problem in case of organism, because every molecule of the same compound is identical and DNA is know to be copied very accurately.

Another thing we may consider regarding to this story is another assumption that Hora and Tempus manufactured perhaps the same quality of watches. What if customers were willing to pay 4000 times more to Tempus’s watch than Hora’s? (this is not completely unrealistic supposition considering the price tag put on the watches made by the top-rated meister) There is an example that typifies this. Linux kernel is a monolithic kernel, which can be comparable to Tempus’s watch and is supposed to be more complex and difficult to develop than more modularly designed microkernels, which can be comparable to Hora’s watch. If the latter is easier to develop, then there should be more microkernel development projects and thus microkernel architecture should flourish, but this is not the case. Besides any politics surrounding kernels, the key factor here is the performance of a monolithic kernel over the ease of development of a microkernel. I admit that above argument is a lot arbitrary ignoring many other factors, but the point here would be that modular design itself does not guarantee successful evolution of complex systems.

Fischer/Eden
2
DLC course, Spring 2005

