Malte Winkler

1. What do you think of the principles described?

“…provide computer support for the creative spirit in everyone”. Now there’s a lofty goal for a programming language. Sounds great and would fun to see implemented well. Is this where the influence for modern OO programming languages came from? A lot of the principles sound like they could have been written for a Java manual. Concepts we now call Inheritance, polymorphism and encapsulation are broached here.

2. Are there any that you think are:

 * Wrong?

* Controversial?

 * Dead on?

 * "motherhood and apple pie”?

 * missing?

The removal of the operating system seems yet a bit far off. If you remove the OS you are assuming that you have designed the perfect programming language and no longer need a base from which to spawn other languages and tools for other tasks. The principles adopted by the OO languages are quite impressive given the time that this article was written.

3. Which do you think are most/least important design criteria?

 Garbage Collection and the statement: “Polymorphism: A program should specify only the behavior of objects, not their representation.” These are all concepts that allow people to think less about how your program is working and more on what it is doing.

The removal of the OS seems a bit dated and more appropriate to computers of the late 70’s.

4. How do these principles relate to other design principles we have discussed in this class?

It seems they have some relation to Simon’s writing. Inheritance can be seen as a way of establishing stable intermediaries like in evolution. If you have stable subsystems then you are more likely to build of off them.
5. Are you familiar with some other object-oriented language? How do they fare with respect to these design principles? Can you find comparisons between Squeak and this language?

The family of C-style languages like Java, C#, pearl, php and so on seem to embrace a lot of these principles quite well. It is getting harder and harder to find the desire to work with a language that doesn’t do garbage collection. Garbage collection allows one to work much more freely and concentrate on the essential difficulties opposed to the accidental (Brooks).
