Mark Lewis Prazen

Design/Learning/Collaboration

Homework #13

Read “Design Principles Behind Smalltalk”
http://users.ipa.net/~dwighth/smalltalk/byte_aug81/design_principles_behind_smalltalk.html
(also uploaded here: Design Principles Behind Smalltalk.pdf)

Answer the following questions:

1. What do you think of the principles described?
In general, I believe they are laudable. However, many are written in general and vague terms, meaning that at an implementation level it would be difficult to determine the author’s intent. For example, the term “uniform” is used throughout the recitation of principles, but uniformity typically has a very specific meaning in a language implementation. What it means in these principles is not clear.
The same point could be made with respect to other principles put forth. On the surface, most appear to be reasonable statements, hard to challenge or disagree with. But, as with most implementations, the devil is in the details and the details aren’t here. Hence, it is difficult to critically evaluate a set of general principals, which on the surface appear legitimate.
2. Are there any that you think are: 

· Wrong?
I’m not certain I agree with the first part of the statement: “A system should be built with a minimum set of unchangeable parts; those parts should be as general as possible; and all parts of the system should be held in a uniform framework.”
This comes back to the age old trade-off between generality and complexity …………. the more general the language is the more complex it is to learn, and consequently, the fewer the number of people who can and will eventually utilize it.
· Controversial? 

The notion that a language doesn’t need or shouldn’t have an operating system seems a bit controversial, at least with regard to the current paradigms of language construction that we have been conditioned to. While that is an interesting idea, in the 25 years since the article no one appears to have come up with a meaningful means around this controller concept in a language. So, at least by present standards, this still seems controversial.
· Dead on? 

The statement “If a system is to serve the creative spirit, it must be entirely comprehensible to a single individual” should be a guiding principle for any language and particularly in light of our conversations in class with respect to meta and end user design.
· "motherhood and apple pie”?
The document is written in such general terms, as noted above; it is hard to challenge most principles as stated in their pure form. As noted, it is just difficult to discern their real meaning or implications at the implementation level of the language.
· missing?
I know this sounds like a broken record, but determining what might be missing is a difficult task due to the general terms in which the tenets of the language are presented. One might infer that the language principles fail to specify a set of operators or primitives or what type of data structures are supported. But, what might be missing is really dependent on a more specific presentation of what the principles in the paper really imply. Otherwise, preparing a set of what is missing is really conjecture.
3. Which do you think are most/least important design criteria?
I believe the Storage Management concept is the most important design criteria since it ensures that storage is handled universally throughout the language and doesn’t need to be managed at procedural levels. To me the least important criteria is the Uniform Metaphor concept. Justification for this is made by citing languages such as APL and LISP which are today used in very discrete domains, indicating that their generalization across disparate domains never really occurred. As such, they aren’t good examples of languages which were well designed to relate to a broad class of users. 
4. How do these principles relate to other design principles we have discussed in this class? 

Objects” are a universal metaphor that can be tied to DODE principles that provide a common framework linking developers to domain experts and building around concepts discussed in meta design and end user design 

“Modularity” is closely related to stable intermediate components as discussed in the Simon article in class earlier. 
5. Are you familiar with some other object-oriented language? How do they fare with respect to these design principles? Can you find comparisons between Squeak and this language

I am familiar with Java. It compares favorably with Smalltalk in terms of supporting features like the Virtual Machine, Classes, Polymorphism, Storage, Messaging, Objects to name a few. However, with respect to the ease of programming, I have no experience with Squeak, and hence, couldn’t discuss the two from an implementation standpoint.
