Kirill Kireyev

DLC Assignment #13
1. What do you think of the principles described?
I generally agree with the most of the statements to some extent. However, many of them seem to be too general and trite to be practically useful outside the given context. Furthermore, I get the impression that rather than serving as a foundation on which Smalltalk was built, these statements were actually retrofitted post-factum, in order to justify Smalltalk vis-à-vis some larger theoretical framework.
2. Are there any that you think are: 

Wrong?

With enough thought most of the statements can be contradicted. Take for example: “A system should be built with a minimum set of unchangeable parts; those parts should be as general as possible; and all parts of the system should be held in a uniform framework.” There are pros and cons to making parts general vs. specific. Recall for instance, the article “Less is More” by W. Buxton, where the author argues for the advantages of more specialized tools (e.g. specialized meat knife) over general tools (e.g. Swiss Army knife).
Controversial?

Many of the statements appear controversial simply because they’re too simplistic. Take for instance “Storage Management: To be truly "object-oriented", a computer system must provide automatic storage management.” Why does that have to be so? What’s wrong with explicitly declaring when an object is required or is no longer needed? Isn’t that similar to tools and objects we use in a daily life? For example, if we need a hammer, we go to retrieve it from out toolbox. When we are done with it, we put it back in the drawer. 

Or let’s look at: “Modularity: No component in a complex system should depend on the internal details of any other component”. That’s great, but it’s in practice it’s not always easy to determine a priori what are the relevant external characteristics and what are “internal details”. Oftentimes two different objects simply must have some degree of intimate knowledge about one another. Take for example two hypothetical classes: Document and Database. Suppose we want to implement persistence of a document within a database. We can either create a method called 

Document::SaveToDatabase (Database db)

 or 

Database::SaveDocument (Document doc)
in either case, one object must have some knowledge about the structure of the other, e.g. in the first case, a document must know (at least at a high level) how to communicate with a database, and in the second, a database must know how to retrieve relevant information from a document. In both cases, details (about Database and Document) that may have been considered “internal” and irrelevant by other objects, all of a sudden become important in order to implement interoperation between these two objects.
Dead On?

I like the statement “If a system is to serve the creative spirit, it must be entirely comprehensible to a single individual.” In the right context, this statement suggests an important principle. However, with enough effort one could contradict it as well. For instance, does a musician playing an electronic piano really need to understand all the underlying details of digital interfaces and electronic circuits (i.e. “comprehend the entire system”) in order to play great music?
Missing?
It’s difficult to point out what specifically is missing, since it’s hard to say how specific this document was intended to be, i.e. one may provide many more rules and principles until a complete language specification is created. That said, one of the notable things that seem to be missing is a description of the minimum set of built-in (kernel) functionality (methods and datatypes) that a language should implement. There are surely more examples, but it all depends on how specific one wishes to get.
3. Which do you think are most/least important design criteria?
I think “A computer language should support the concept of "object" and provide a uniform means for referring to the objects in its universe” is quite important because it allows the programming language to mirror our natural understanding of objects in the real world, thereby lending to better ease of use and design of complex systems using simpler parts.
4. How do these principles relate to other design principles we have discussed in this class?
There are a few notable relations. For example, “Leverage: When a system is well factored, great leverage is available to users and implementers alike” goes along with the earlier discussion of building complex systems out of stable sub-systems (i.e. the watchmaker story). The statement “A language must provide a means for classifying similar objects, and for adding new classes of objects on equal footing with the kernel classes of the system” adheres to the philosophy of meta-design.

5. Are you familiar with some other object-oriented language? How do they fare with respect to these design principles? Can you find comparisons between Squeak and this language?
I’m familiar with Java and C++. They generally seem to adhere to the stated principles, although in some cases this is difficult to ascertain, since the principles are simply too broad and vague. Take for example, the statement “A language should be designed around a powerful metaphor that can be uniformly applied in all areas.” What exactly could this “powerful metaphor” be in the case of Java? This is unclear, yet Java and C++ are some of the most popular programming languages. On the other hand, Smalltalk, LISP, and APL which the author claims to contain such powerful metaphors, are (at least currently) only viable among academics and obscure hobbyists (seemingly in contradiction to the last statement the author makes about “natural selection”).
