
Figure 1. Information collection and flow in design
(Redrawn from [1].)

Design Informatics –
Information Needs in Design

David G. Hendry
Information School

University of Washington Seattle, WA 98195
dhendry@u.washington.edu

ABSTRACT
The position I would like to advance in this workshop is
that a deeper understanding for design can be obtained by
taking an information perspective on design activities.
Under this perspective the major unit of analysis is the
information transaction – the specific needs and tasks
associated with capturing, storing, updating, linking, and
accessing information. By focusing on the information
capacities that design teams create for themselves and by
describing them with a technologically-neutral vocabulary,
we can begin to recognize commonalities that span design
methodologies. This approach offers a strategy for
developing a more unified view of design which, in turn,
can provide insight into the requirements of design
information systems and elucidate new areas of design
competency and opportunity.

Author Keywords
Design, Information Needs, Design Information Systems,
Design Informatics

INTRODUCTION
Design is information intensive. In 1965, for example,
Archer [1] introduced a normative, stage model of design
with “data collection” at its center (Figure 1). The model
shows the interpenetration or cross-connectedness of design
activities and information-handling activities such as
capturing relevant information, recording information in
documents, organizing documents, finding documents, and
seeking information from experts. When Archer introduced
this model, he seemed to assume that the demands of the
design process would cause information handling to unfold
in a straightforward fashion.

In any case, his writing does not discuss the problematic
connection between “design,” that is, furthering the thing
that is to exist, and “documenting,” that is, recording what

has been asserted or discovered about the thing. Indeed, a
fundamental trade-off in all settings of design is that if time
is spent documenting for uncertain future benefits, it is
taken away from designing for immediate progress [8].

The costs associated with documenting can be divided into
two components: 1) Cost of knowledge [4], that is, the costs
associated with finding some information in a particular
kind of system; and 2) Cost of update [7], that is, the costs
associated with adding, updating, deleting, information that
might be needed in the future. A significant long-term
challenge for design, especially in the Participation Age
[16], is developing an understanding for how best to
manage these costs and how to weigh them against the
present and future benefits of the collected information.

DESIGN INFORMATION SYSTEMS
Design information systems, as I shall call them, are
physical or electronic systems that endow teams with
particular capacities for design. Because they are
information systems, they also entail the costs of
knowledge and update. To demonstrate these costs,
consider four examples.

First, the IDEO TechBox [11] is a cabinet containing an
eclectic collection of artifacts that illustrate new materials
or recent innovations that can be touched and exaimed. The
TechBox is intended to promote analogical reasoning and
creative exploration. Because of its relatively small size,
central location, and loose organization of artifacts both the
costs of knowledge and update are low.

Second, the Manifesto for Agile Software Development’s
[3] second principle says to minimize formal
documentation in favor of working systems. Consultants
who teach Agile techniques often begin by eschewing
electronic tools, even simple ones. Then, they introduce the
use of PostIt Notes on a centrally located whiteboard,
guiding the team to track very simple information – for
example, features being implemented, features
implemented but not tested, and features still to be
prioritized, and so on. With the use of color and spatial
groupings such information is readily tracked. Like the
TechBox but for a different purpose, this design
information system minimizes both the cost of knowledge
and update; further, the system provides the team with
situational awareness of the overall state of the project.

The downside of the artful use of PostIts and a whiteboard,
however, is that it works for collocated teams only. To
enable participation by developers who are physically
remote, the team might agree to take images of the
whiteboard at regular intervals and to post them on, for
example, a Wiki. This move, on the one hand, provides a
new capacity for involving remote participants but, on the
other hand, increases the costs of the knowledge and
update, perhaps significantly.

Third, Rittle’s influential approach to design rationale,
Issue-Based Information Systems (IBIS), appeals to the
idea that systematic argumentation will enable teams to
manage the complexity of an unstructured design problem.
As such, when performing under the rules of IBIS, a team
generates a network of linked information units, each
labeled according to its rhetorical purpose. In turn, the
network’s function is to be a:

documentation and reporting system which
permits fast and reliable information on the state
of discourse at any time [12, p. 4].

In this aim, we see an optimistic focus on the low cost of
knowledge. Experience using IBIS, and similar systems,
however, shows that the cost of update is very significant.
In fact, it is often so high that the use of such systems
becomes impractical [10].

Fourth, empirical studies of open source software projects
[6,9,19] have described the importance of relatively simple
tools and usage policies, concerning such matters as how to
report bugs, how to version code, how to report code
changes, and so on. In fact, the community-based model of
knowledge creation [13] proposes that code versioning
(e.g., stable and experimental versions) together with a
discussion space (e.g., a listserv) enables a social structure
to develop (e.g., Project Leader, Maintainers, Developers,
and Bug Reporters). The resulting sociotechnical system
enables the community to enjoy its cumulative innovations
by using stable releases while simultaneously allowing it to
explore, evaluate, and learn using experimental releases of
the code.

In this example, we can readily recognize separate spaces
for action and reflection and deictic references between the
two spaces [2]. Somehow, it seems reasonable to assume,
the assembly and use of the information systems that
underlie open source development strike a good balance
between the costs of knowledge and update. The use of
mundane tools and near invisible infrastructure is striking.

In summary, these wide ranging examples illustrate an
important kind of meta-design – the design of information
handling systems that support the capture, organization, and
use of information on which design work depends. The cost
of knowledge and update are concepts for thinking about
this kind of meta-design.

ENABLING “USER” PARTICIPATION IN DESIGN
Many approaches are currently emerging for inviting users
to participate in design and development through various
roles, such as the Monitored User, the Bug Reporter, the
Remote Usability Participant, the Conceptual Innovator,
and the Co-developer. Of course, to enact these roles and to
take advantage of the information generated by them design
information systems are needed.

Bug trackers, as one example, can be used to contribute
structured feedback on errors [5], although pre-established
labels for classifying errors, say operating system bugs, can
make it difficult to submit and resolve other kinds of
“errors,” such as usability bug reports [17]. As a second
example, Beta releases can use discussion forums to
promote the formation of such roles as “lead users,” “early
adopters” and “innovators” [18, 15]. Getting into a Beta
release, can garner social capital, which is then
compounded when Beta participants write about their
experiences in public forums and link to other Beta
participants and technology commentators and culture
shapers. Designers, in turn, can monitor these conversations
at the periphery and develop an understanding for the users’
perspectives, glean new ideas, or clarify design intuitions.
Or, they may intervene directly in the forum and prompt
users to talk about particular topics or share rationale on the
system’s evolving design.

Nevertheless, while these approaches provide the means for
involving users, some significant questions arise about
ends. How should the development process and the artifact
under development be structured to accommodate user-
input that is diverse and continuous? How should these
three elements be interrelated? How, in short, does the
network and such emerging technologies as those cited
above expand the possibilities for involving users in a
design and development environment and how does one
select from all the possibilities? Finally, in turn, what new
organizational capacities and individual design
competencies are required?

Commercial slogans such as the Participation Age [16] and
Architecture of Participation [14] give such questions
particular urgency. The future possibility, in short, is: More

people, of various roles, will participate with varying
degrees of directness and influence – and most often
remotely – in the development of information systems.
From a position of scholarship, von Hippel [19] labels the
trend democratizing innovation and provides evidence from
a variety of domains that users are often the first to identify
new needs and invent significant improvements. He argues
that for commercial advantage, if not for social or ethical
reasons, firms will need to structure product development to
take full advantage of users’ creativity and their situated
adaptations of systems – but, how? As the call for this
workshop asks – What are the sociotechnical conditions
that lead to innovative and productive communities?

A noteworthy case for study is del.icio.us, a breakthrough
application for social bookmarking. The development
process for this socially oriented information management
application is characteristic of open source software
development in some respects and of proprietary, packaged
software development in others. For example, while people
are denied access to the del.icio.us source code and are
prevented from running their own versions, they can use a
public API to build their own applications that use the data
held by del.icio.us. Then, people can discuss their
innovations on a del.icio.us listserv and on public blogs. In
turn, the del.icio.us development team can learn from
others’ development efforts and written reflections. Or, the
development team can use the discussion spaces to prompt
people to talk about their work in productive ways, to elicit
new ideas and to discuss them, and so on. The broad picture
that emerges is an intricate social network of joint reflection
and the diffusion of ideas and tangible innovations (e.g.,
code fragments, user interfaces, etc.)

del.icio.us, in summary, shows how design and
development can be servitized, leading to a process that
proceeds simultaneously and is entwined with the formation
and nurturing of a community of “users”, perhaps more
accurately called “innovators” [15]. And so design
information systems will increase the information intensity
of design as they expand the footprint of design process by
allowing many more people to participate. Meta-design of
this kind demands new competencies from individuals and
new capacities from organizations.

THE INFORMATION PERSPECTIVE ON DESIGN
The position I would like to advance in this workshop is
that a deeper understanding for design can be obtained by
taking an information perspective on design activities.
Under this perspective the major unit of analysis is the
information transaction – the specific needs and tasks
associated with capturing, storing, updating, linking, and
accessing information. I use the term Design Informatics to
refer to this perspective.

By analyzing the information needs of design and how
design teams create capacities to satisfy these needs, we
may begin to recognize the invariant, technologically-
neutral requirements that emerge from any design

methodology. In turn, we are then able to recognize the
commonalities of otherwise different methodologies. An
information focus, in short, offers a strategy for developing
a unified view of design. I wish to defend this claim and
better understand it through vigorous dialog at the
workshop.

REFERENCES
1. Archer, B. Systematic Methods for Designers. In Cross,

N. (Ed.), Developments in Design Methodology, John
Wiley & Sons, New York, 1984.

2. Arias, E., Eden, H., Fischer, G., Gorman, A. and Scharff,
E. Transcending the individual human mind: Creating
shared understanding through collaborative design. ACM
Trans. on CHI, 7, 1 (2000), 84-113.

3. Beck, K. et al. Manifesto for agile software development.
Retrieved 01/10/07 from http://agilemanifesto.org/

4. Card, S.K., Pirolli, P. and Mackinlay, J.D., The cost-of-
knowledge characteristic function: display evaluation for
direct-walk dynamic information visualizations. In Proc.
CHI '94, ACM Press (1994), 238-244.

5. Crowston, K. and Scozzi, B., Coordination practices with
FLOSS development teams: The bug fixing process In
Proc. of the First International Workshop on Computer
Supported Activity Coordination (2004).

6. Ducheneaut, N., Socialization in an open-source software
community: A socio-technical analysis. Computer
Supported Cooperative Work, 14 (2005), 323-368.

7. Green, T.R.G. and Benyon, D.R. The skull beneath the
skin: entity-relationship models of information artifacts.
Int. J. of Human-Computer Studies, 44 (1996), 801-828.

8. Grudin, J. Evaluating opportunities for Design Capture.
In Moran, T. and Carroll, J. (Eds.), Design Rationale:
Concepts, methods and techniques, Erlbaum, Mahwah,
NJ, (1996) 453 - 470.

9. Hendry, D. G. Public Participation in Proprietary
Software Development through User Roles and
Discourse. Submitted.

10. Isenmann, S. and Reuter, W.D., IBIS: A convincing
concept…but a lousy instrument? In Proc. DIS '97, ACM
Press (1997), 163-172.

11. Kelley, T. The Art of Innovation. Random House, New
York, 2001.

12. Kunz, W. and Rittel, H.W.J. Issues as Elements of
Information Systems Working Paper No. 131, Institute of
Urban and Regional Development, University of
California, Berkeley, California, (1970).

13. Lee, K. G. and Cole, R. E., From a firm-based to a
community-based model of knowledge creation: The case
of the Linux kernel development. Organization Science,
14, 6, (2003), 633-649.

14. O'Reilly, T. The Architecture of Participation,
Retrieved 01.10.07 from www.oreillynet.com/pub/3017,
(2003).

15. Rogers, E. M. Diffusion of Innovations (3rd Edition).
Free Press, New York, 1983.

16. Schwartz, J. The Participation Age, Retreived 01.10.07
from http://blogs.sun.com/roller/page/jonathan?entry=
inevitability, (2005, April 04).

17. Twidale, M.B. and Nichols, D.M., Exploring usability
discussions in open source development. In Proc.
HICSS'05, IEEE (2005), 198.3.
19. von Hipple, E. Democratizing Innovation. MIT Press,
Cambridge, MA, 2005.
20. Yamauchi, Y., Yokozawa, M., Shinohara, T. and Ishida,
T., Collaboration with lean media: How open-source
software succeeds. In Proc. CSCW '00 (2000), 329-33.

